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Schedule Overview

Sunday, Decembner 11th

14:00- Registration

Room I & II
15:00-15:15 Opening Address
15:15-16:15 Stankewitz
16:30-17:30 Yamanoi

18:00-20:00 Opening Reception at the restaurant Rencontre

Monday, December 12th

Room I & II
09:15-10:15 Kamimoto
(Tea)
10:45-11:45 Taniguchi
(Lunch)

Room I Room II
13:20-13:50 Maitani KH Shon
13:55-14:25 Jaerisch Fujimura
14:30-15:00 Umemoto Shimauchi
(Tea)
15:30-16:00 Komori JS Choi
16:05-16:35 Fujikawa Liao
16:40-17:10 Matsuzaki Sumi
17:15-17:45 Nakamura Okuyama

Tuesday, December 13th

Room I & II
09:00-10:00 Porter
10:10-11:10 Koo

11:10- Excursion to Miyajima Island
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Wednesday, December 14th

Room I & II
09:15-10:15 Korhonen
(Tea)
10:45-11:45 Yoshino
(Lunch)

Room I Room II
13:20-13:50 Coulembier Hirata
13:55-14:25 Nishihara Ohno
14:30-15:00 Le Hung Son Sugawa
(Tea)
15:30-16:00 Hitzer YC Kim
16:05-16:35 Sekiguchi Makhmutov
16:40-17:10 Honda Denega
17:15-17:45 Kou-Ou Vasiliev

Thursday, December 15th

Room I & II
09:15-10:15 Stoll
(Tea)
10:45-11:45 KT Kim
(Lunch)

Room I Room II
13:20-13:50 JC Joo Mizuta
13:55-14:25 HJ Lee Itoh
14:30-15:00 Kikuta YJ Lee
(Tea)
15:30-16:00 AR Seo Tanaka
16:05-16:35 Aihara KG Na
16:40-17:10 HS Kim Rathie
17:15-17:45 Kato Zelinskyi

18:30-20:30 Banquet at the restaurant Kurikawa
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Plenary Lectures

Newton polyhedra and oscillatory integrals

Joe Kamimoto

Faculty of Mathematics, Kyushu University

Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan

joe@math.kyushu-u.ac.jp

In this talk, the asymptotic behavior at infinity of oscillatory integrals is in detail investi-
gated by using the Newton polyhedra of the phase and the amplitude. We are especially
interested in the case that the amplitude has a zero at a critical point of the phase. The
properties of poles of local zeta functions, which are closely related to the behavior of
oscillatory integrals, are also studied under the associated situation.

Joint work with Koji Cho and Toshihiro Nose (Kyushu University).

References

[1] K. Cho, J. Kamimoto and T. Nose: Asymptotic analysis of oscillatory integrals via the Newton
polyhedra of the phase and the amplitude, To appear in J. Math. Soc. Japan.
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On the generalization of Forelli’s theorem in several complex variables

Kang-Tae Kim

Department of Mathematics, Pohang University of Science and Technology

Pohang, Korea

kimkt@postech.edu

The statement of classic theorem of F. Forelli proved in 1977 is as follows:

Theorem 1 If a complex-valued function f from the open unit ball in n dimensional
complex Euclidean space satisfies the two conditions:
(1) f admits a formal Taylor expansion at the origin 0, and
(2) f is holomorphic along every straight complex line passing through 0,
then f is holomorphic on the unit ball.

As one sees from the statement, this apparently is a significant variation of the celebrated
Hartogs’ analyticity theorem in several complex variables. On the other hand, this theo-
rem is well-known to be highly subtle, in the sense that the conditions in the hypothesis
of the theorem was regarded impossible to be improved by many experts. One aspect
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is clear; if the birational blow-up method is applied at the origin, the new setting deals
with the function that is holomorphic along one dimensional complex lines spanned along
the exceptional fiber and does not immediately show any further holomorphicity in other
directions. Thus the existence of the formal Taylor series at the origin must be truly the
special condition. Thus it was not surprising that there have been no significant report
on generalization of Forelli’s theorem for almost 30 years, perhaps due to such difficulty.
After the long ”drought”, there have been two, as far as we are aware of, recent general-
izations, which are distinguished from each other. Both concern the generalization of the
condition (2). The first was the two-dimensional theorem by E. Chirka (2006) replacing
the condition (2) by the concept of smooth ”singular” foliation at the origin by holomor-
phic curves. The other one is all-dimensional, but the condition (2) was replaced by the
condition of annihilation of f by the conjugate of a contracting holomorphic vector field
without resonance, which is by K.T. Kim, E. Poletsky and G. Schmalz (2008). These
two conditions represent two mutually independent cases. Then, a recent (2011) result by
J.C. Joo, K.T. Kim and G. Schmalz shows that, with a slightly stronger condition, the
all dimensional version of Chirka’s theorem is true, thus answering the question raised by
Chirka in his paper ”Variations of Hartogs’ theorem”. I shall start with, in the lecture,
the history and survey of this circle of research first, then present sketch of proofs of the
major results, and finally finish with some open problems for possible future research.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Difference versions of the Painlevé equations

Risto Korhonen

University of Eastern Finland, Department of Physics and Mathematics

P.O. Box 111, FI-80101 Joensuu, Finland

risto.korhonen@uef.fi

An ordinary differential equation is said to possess the Painlevé property if all of its
solutions are single-valued about all movable singularities. Painlevé and his colleagues
analyzed a large class of second-order differential equations rejecting those equations which
did not have the Painlevé property. They singled out a list of 50 equations out of which
there were six which could not be integrated in terms of known functions. These equations
are now known as the Painlevé differential equations.
Ablowitz, Halburd and Herbst have suggested that the existence of sufficiently many
finite-order meromorphic solutions is a good candidate for discrete Painlevé property. In
[2] we showed that if the difference equation

w(z + 1) + w(z − 1) = R(z, w(z)), (1)

where R(z, w(z)) is rational in w(z) and meromorphic in z, has just one or more finite-
order meromorphic solutions that grow faster than the coefficients of the equation, then
either w(z) satisfies a difference linear or Riccati equation or else equation (1) can be
transformed to one of a list of canonical difference equations. This list consists of all
known difference Painlevé equations of the form (1), together with their autonomous
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versions. This suggests that the existence of finite-order meromorphic solutions is a good
detector of integrable difference equations. The finite-order growth condition was replaced
by a weaker condition in [1], where we also showed that this condition is essentially the
best possible, at least in the first-order case.

Joint work with Rod Halburd (University College London) and Kazuya Tohge (Kanazawa University).

References

[1] R. G. Halburd, R. Korhonen, and K. Tohge, Cartan’s value distribution theory for Casorati determi-
nants, arXiv:0903.3236 (2009).

[2] R. G. Halburd and R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé
equations, Proc. London Math. Soc. 94 (2007), no. 2, 443–474.
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Difference of composition operators

Hyungwoon Koo

Department of Mathematics, Korea University

Seoul 136-713, Republic of Korea

koohw@korea.ac.kr

In this talk we discuss the boundedness and the compactness of difference of composition
operators. We first discuss known results on the unit disc and the polydisc, then we focus
on the Fock-Sobolev spaces. Linear combinations of composition operators acting on the
Fock-Sobolev spaces of several variables will be discussed. We show that such an operator
is bounded only when all the composition operators in the combination are bounded
individually. So, cancelation phenomenon is not possible on the Fock-Sobolev spaces, in
contrast to what have been known on other well-known function spaces over the unit disk.
We also show the analogues for compactness and the membership in the Schatten classes.
In particular, compactness and the membership in some/all of the Schatten classes turn
out to be the same.

Joint work with Hong Rae Cho(Pusan University) and Boo Rim Choe(Korea University)

References

[1] H. Cho, B. Choe and H. Koo, Linear combinations of composition operators on the Fock-Sobolev
spaces, preprint.

[2] B. Choe, K. Izuchi and H. Koo, Linear sums of two composition operators on the Fock space, J. Math.
Anal. Appl. 369(2010), 112-119.

[3] B. Choe, H. Koo and I. Park, Compact differences of composition operators induced by symbols defined
on polydiscs, preprint.

[4] J. Moorhouse, Compact differences of composition operators, J. Funct. Anal. 219(2005), 70-92.
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Numerical solution of the Beltrami equation

R. Michael Porter

Department of Mathematics, CINVESTAV-I.P.N.
Apdo. Postal 1-798, Arteaga 5, Centro

Santiago de Querétaro, Qro.

CP 76001 MEXICO

mike@math.cinvestav.edu.mx

We will survey some of the existing methods for solving the Beltrami equation fz = µfz
numerically. The solution is a “µ-conformal” mapping of prescribed domains, such as
the unit disk. The ideas behind these methods (for example, singular integrals or circle
packings) will be discussed.
A simpler and more intuitive method for solving the Beltrami equation will be presented,
which may be described briefly (and incompletely) as follows: triangulate D1, map each
triangle in a piecewise affine way to form a domain D′

2 which is µ-conformal to D1, and
then map D′

2 conformally to the desired image D2.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Möbius semigroup Dynamics and the Fibonacci sequence

Rich Stankewitz

Ball State University

Muncie, IN 47304, USA

rstankewitz@bsu.edu

We study the dynamics of semigroups of Mobius transformations on the Riemann sphere,
focusing on the topology of the invariant structures that these systems generate, namely,
their Fatou and Julia sets and attractors. We highlight the natural connections between
the dynamics of rational functions, rational semigroups, and Mobius groups, as well as
illustrate their differences with examples. In particular, we consider the motivating exam-
ple, a one-parameter family of Mobius semigroups originating from a random dynamics
variant of the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, ....

Joint work with David Fried (Boston University) and Sebastian M. Marotta (University of the Pacific).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Invariant Potential Theory, Derivatives of Inner Functions, and Bp,q Spaces
in the Unit Ball of Cn

Manfred Stoll

Department of Mathematics, University of South Carolina

Columbia, SC 29208, USA

stoll@math.sc.edu
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Let Bn be the unit ball in Cn with boundary S. A bounded holomorphic function f on
Bn is called an inner function if

lim
r→1−

|f(rt)| = 1 for a.e. t ∈ S.

For 0 < p < 1 and 0 < q < ∞, the space Bp,q is defined as the space of holomorphic
functions f on Bn for which

∥f∥qBp,q =

∫
Bn

(1− |z|2)
n
p
−n−1|f(z)|q dν(z) < ∞,

where ν is normalized Lebesgue measure on Bn. The case q = 1 gives the usual Bp spaces
of holomorphic functions on Bn. Using techniques and results of potential theory with
respect to the Laplace Beltrami operator on Bn, we prove that for n

n+q
< p < min{n

q
, 1},

the radial derivative Rf of an inner function f satisfies

Rf ∈ Bp,q ⇐⇒
∫
Bn

(1− |z|2)
n
p
−q−n−1|∇̃f(z)|rdν(z) < ∞ (1)

for all r, q, with 1 ≤ q ≤ r ≤ 2, where ∇̃ denotes the gradient with respect to the Bergman
metric on Bn. As an application of (0.1) we prove the following.

Theorem: Let f be an inner function on Bn, n ≥ 1.
(a) If 0 < (1− α) < 1

2
r, 1 ≤ r ≤ 2, then

Rf ∈ B
n

n+α ⇐⇒
∫
Bn

(1− |z|2)r+α−2|Rf(z)|rdν(z) < ∞.

(b) If 1 ≤ q ≤ 2, then for n
n+q

< p < n
n+(q−1)

we have

Rf ∈ Bp,q ⇐⇒ Rf ∈ Bs where s =
np

n− p(q − 1)
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On spaces of rational functions

Masahiko Taniguchi

Faculty of Sciences, Nara Women’s University, Japan

Kitauoyahigashi-machi, Nara 630-8506, Japan

tanig@cc.nara-wu.ac.jp

Usually, parameters such as critical points, critical values, and fixed points, are considered
as standard parameters for the various deformation spaces induced from rational functions,
such as the Hurwitz spaces, the Teichmüller spaces, and also the moduli spaces.
Here, I use the Bell spaces, or more generally, the Cauchy spaces of rational functions for
the parameter spaces. We clarify the relations between the Bell spaces, or the Cauchy
spaces, and the standard parameters as above. Also, we explain several natural kinds of
the compactification of the deformation spaces as above.
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On value distribution of derivatives of meromorphic functions

Katsutoshi Yamanoi

Department of Mathematics, Tokyo Institute of Technology

2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

yamanoi@math.titech.ac.jp

We discuss about value distribution of derivatives of meromorphic functions in the plane.

References

[1] K. Yamanoi, Zeros of higher derivatives of meromorphic functions in the plane, preprint.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Monodromy property of analytic non integrable Hamiltonian system

Masafumi Yoshino

Graduate School of Science, Hiroshima University

1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

yoshinom@hiroshima-u.ac.jp

In this talk we consider a resonant Hamiltonian system (E) q̇ = ∇pH, ṗ = −∇qH, where
H = H(q, p) is a Hamiltonian function and q = (q1, . . . , qn) and p = (p1, . . . , pn) are
the variables in Rn or in Cn (n ≥ 2). We denote the Hamiltonian vector field χH by
χH := {H, ·}, where {·, ·} denotes the Poisson bracket. We say that ϕ is the first integral
of χH if χHϕ = 0. The system (E) is said to be Cω-Liouville integrable if there exist first
integrals ∃ϕj ∈ Cω (j = 1, . . . , n) which are functionally independent on an open dense
set and Poisson commuting, i.e., {ϕj, ϕk} = 0, {H,ϕk} = 0. If ϕj ∈ C∞ (j = 1, . . . , n),
then we say C∞- Liouville integrable.
Bolsinov and Taimanov (Invent. Math. 2000 ) showed the existence of a Hamiltonian
system related with geodesic flow on a Riemannian manifold which is Cω-nonintegrable
as well as C∞-integrable. They also showed that non Cω- integrability is closely related
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with the non Abelian property of a monodromy group. (See also Gorni, G. and Zampieri,
G for a further extension.)
In order to study the monodromy structure of these Cω-nonintegrable operators we note
that, by the implicit function theorem, the integrability is essentially equivalent to the
existence of an n-parameter solutions satisfying a certain nondegeneracy condition (com-
plete solution). In view of the fundamental solution of a linear ordinary differential equa-
tion with irregular singularity these solutions are constructed via a formal exponential-
log series, a power series with ordinary power series, exponentials and logarithm. We
will construct first integrals in this form and we discuss asymptotic expansion, analytic
continuation and monodromy.
Technically, we will make use of the moment sum of the series. Then we study the
behaviors of the summed first integrals in a sector and analytic continuation beyond the
sector.

References

[1] Balser, W. and Yoshino, M., Math. Z., 268 (2011) , 257-280.

[2] Bolsinov, A.V. and Taimanov, I.A.: Invent Math. 140 (3), 639-650 (2000).

[3] Gorni, G. and Zampieri, G.: Differ. Geom. Appl. 22, 287-296 (2005).
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Invited Talks

Deficient Divisors of Holomorphic Curves

Yoshihiro Aihara

Fukushima University

Fukushima 960-1296, Japan

aihara@educ.fukushima-u.ac.jp

Let M be a smooth complex projective algebraic variety and L → M an ample line
bundle. We let Γ(M, L) denote the space of all holomorphic sections of L → M . Let
W ⊆ Γ(M, L) be a linear subspace with l0 + 1 = dimW ≥ 2. Denote by Λ the
linear system determined by W , that is, Λ = P(W ). The linear system Λ may have
the non-empty base locus. Let I0 be the coherent ideal sheaf of the structure sheaf
OM over M that defines the base locus BΛ of Λ as a complex analytic subspace.
Let f : C → M be a transcendental holomorphic curve that is non-degenerate with
respect to Λ, namely, the image of f is not contained in the support of any divisor in
Λ. We let δ̃f (D) and δ̃f (BΛ) denote modified deficiencies in the sense of Nochka. We

consider the set D̃f of deficient divisors defined by

D̃f = {D ∈ Λ ; δ̃f (D) > δ̃f (BΛ)}.

We can show that D̃f is P-polar in Λ. In particular, the Hausdorff dimensions of those

sets are at most 2l0 − 2. We have a structure theorem for D̃f as follows.

Theorem 1. The set D̃f is a union of at most countably many linear systems included
in Λ.

By the above theorem, we have a family {Λj} of at most countably many linear systems

in Λ such that D̃f =
∪

j Λj. We define L = {Λj}∪{Λ}. Let δ̃f (Λ) be the set of values

of the function δ̃f : Λ → [0, 1]. Then we can establish the correspondence between the
values in δ̃f (Λ) and the subfamilies of L.

Theorem 2. The set δ̃f (Λ) is an at most countable subset of [0, 1]. For each α ∈ δ̃f (Λ),

there exists a unique finite subfamily Lα = {Λ(α)
j } of L such that α = δ̃f (BΛ

(α)
j
) for

all Λ
(α)
j ∈ Lα and α ̸= δ̃f (BΛj

) for all Λj ∈ L \ Lα.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Asymptotic Formulas and Inequalities for the multiple Gamma Functions

Junesang Choi

Department of Mathematics, Dongguk University

Gyeongju 780-714, Republic of Korea

junesang@mail.dongguk.ac.kr
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There is an abundant literature on inequalities for the Gamma function Γ and its various
related functions as well as their approximations. Only very recently, several authors
began to investigate various inequalities for the double Gamma function Γ2 and its ap-
proximation. Here, in this sequel to some of these recent works, we aim at presenting an
integral representation of the triple Gamma function Γ3, which is then used to derive an
asymptotic formula for Γ3. As a by-product of the results presented here, integral repre-
sentations and asymptotic formulas for the Gamma function Γ and the double Gamma
function Γ2 are also given. The methods and techniques used in this paper can easily be
extended to derive the corresponding integral representations and asymptotic formulas
for the multiple Gamma functions Γn (n = 4).
Also certain inequalities for the multiple Gamma functions Γn (n = 2, 3, 4, 5) and a more
convenient explicit form of the multiple Gamma functions Γn (n ∈ N), N being the set of
positive integers, are presented.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Conformal symmetries of the super Dirac operator

Kevin Coulembier

Department of mathematical analysis, Ghent University

Krijgslaan 281, 9000 Gent, Belgium

coulembier@cage.ugent.be

We introduce the super Dirac operator acting on functions on Rm|2n with values in the
super spinor space (see [1]). The definition is inspired by a construction of Stein and Weiss
of o(m)-invariant generalized Cauchy-Riemann systems, see [4]. In this way we obtain an
osp(m|2n)-invariant differential operator. This Dirac operator is a differential operator
with values in a Clifford-Weyl algebra Clm|2n, which can be identified with endomorphisms
on spinor space. The osp(m|2n)-action on the super spinors can then be embedded in
this action of Clm|2n, see also [3]. All of this leads to a related osp(m|2n)-invariant Dirac
operator on functions with values in the Clifford-Weyl algebra. For most statements the
two Dirac operators can be identified.
Together with the super vector variable the Dirac operator generates the Lie superal-
gebra osp(1|2), as in the classical Rm-case. The square of the Dirac operator is for
instance the well-known super Laplace operator. We prove the monogenic Fischer decom-
position of spinor-valued super polynomials. This shows we obtain the Howe dual pair
(osp(m|2n), osp(1|2)).
As in the classical case, see [2], the construction of Stein and Weiss leads to an operator
which has a class of conformal symmetries that is larger than osp(m|2n). We show that
in the case of the super Dirac operator the conformal algebra is given by osp(m+1, 1|2n).

References

[1] K. Coulembier On a class of tensor product representations for the orthosymplectic superalgebra.
submitted
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Separating transformation in extremal problems on non-overlapping domains

Iryna Denega

Institute of Mathematics of NAS of Ukraine

Tereshchenkivska Str 3, Kyiv 01601, Ukraine

iradenega@yandex.ru

Let N, R be sets of natural and real numbers respectively, C be a complex plane, C =
C
∪
{∞} be a one point compactification and R+ = (0,∞). Let χ(t) = 1

2
(t + t−1). Let

n ∈ N. A set of points An :=
{
ak ∈ C : k = 1, n

}
, is called n - radial system, if |ak| ∈ R+,

k = 1, n, and 0 = arg a1 < arg a2 < . . . < arg an < 2π. Denote αk := 1
π
arg ak+1

ak
, αn+1 :=

α1, k = 1, n.
Let r(B, a) be a inner radius of domain B ⊂ C, with respect to a point a ∈ B (see [1, 2]).
For an arbitrary n-radial system of points An = {ak} we assume that

L(An) :=
n∏

k=1

[
χ

(∣∣∣ ak
ak+1

∣∣∣ 1
2αk

)]
· |ak|.

Theorem 1. Let 0 < γ ≤ γ2, γ2 = 3
5
. Then for any 2-radial system of points A2 =

{ak}2k=1 such that L (A2) = 1 and any system of non-overlapping domains B0, B1, B2,
B∞ (a0 = 0 ∈ B0 ⊂ C, ∞ ∈ B∞ ⊂ C, a1 ∈ B1 ⊂ C, a2 ∈ B2 ⊂ C ), we have inequality

[r (B0, 0) r (B∞,∞)]γ r (B1, a1) r (B2, a2) 6

6 [r (Λ0, 0) r (Λ∞,∞)]γ r (Λ1, λ1) r (Λ2, λ2) ,

where Λ0, Λ∞, Λ1, Λ2 and 0, ∞, λ1, λ2 are circular domains and poles of quadratic

differential Q(w)dw2 = −γw4+(4−2γ)w2+γ
w2(w2−1)2

dw2.

Joint work with A.K. Bakhtin (Institute of Mathematics of NAS of Ukraine).
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Periodicity of asymptotic Teichmüller modular transformations
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The quasiconformal mapping class group MCG(R) of a Riemann surface R induces the
biholomorphic automorphism group of the Teichmüller space T (R) and that of the asymp-
totic Teichmüller space AT (R), which are defined as the Teichmüller modular group
Mod(R) and the asymptotic Teichmüller modular group ModAT (R), respectively. A non-
trivial element of Mod(R) is said to be elliptic if it has a fixed point in T (R) and a
non-trivial element of ModAT (R) is said to be elliptic if it has a fixed point in AT (R).
Every elliptic element of Mod(R) is realized as a conformal automorphism of the Riemann
surface corresponding to its fixed point, and every elliptic element of ModAT (R) is realized
as an asymptotically conformal automorphism of the Riemann surface corresponding to
its fixed point.
If R is analytically finite, then an element of Mod(R) is elliptic if and only if it is periodic
(finite order). This follows from the classical result of Nielsen. In the case where R is
analytically infinite, an elliptic element of Mod(R) can be of infinite order. However, an
elliptic element of Mod(R) induced by a conformal automorphism fixing a simple closed
geodesic is periodic. On the other hand, even if R is analytically infinite, every periodic
element of Mod(R) is elliptic.
In this talk, we consider the corresponding results for ModAT (R). We prove that, under
the boundedness assumption on R, if an elliptic element of ModAT (R) is induced by an
asymptotically conformal automorphism that fixes the free homotopy classes of infinitely
many simple closed geodesics satisfying certain properties, then it is periodic. On the
other hand, we also prove that every periodic element of ModAT (R) is elliptic under the
same boundedness assumption on R.

Joint work with Katsuhiko Matsuzaki (Waseda University).
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Let R be a rational map of degree d. Two rational maps R1 and R2 are said to be Möbius
equivalent if there is a Möbius transformation M : Ĉ → Ĉ such that R2 = M ◦ R1. Let
Xd be the set of all equivalence classes of rational maps of degree d. Then, R has 2d− 2
critical points counted including multiplicity, and the set of critical points is invariant
under taking a Möbius conjugate.
In [2], Goldberg showed the following theorem: A (2d − 2)-tuple B is the critical set of
at most C(d) classes in Xd, where C(d) means the d-th Catalan number. The maximal is
attained by a Zariski open subset of the space Ĉ2d−2 of all B. She also gave the problem
that asks the explicit number of the equivalence classes corresponding to given critical set
c ∈ Ĉ2d−2.
In this talk, I give a complete answer to this problem when d = 3 and 4.
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Admissible boundary limits of Green potentials satisfying nonlinear
inequalities in the unit ball of Cn

Kentaro Hirata

Faculty of Education and Human Studies, Akita University

Akita 010-8502, Japan

hirata@math.akita-u.ac.jp

The classical theorem of Littlewood states that every Green potential in the unit disk
has radial limit 0 almost everywhere on the unit circle. This was extended by Ullrich
[3] to (complex) higher dimensions. It is not difficult to see that Green potentials do
not necessarily have nontangential limits. Therefore Arsove and Huber [1] gave sufficient
conditions for the density f that the Green potential of f has nontangential limits almost
everywhere on the unit circle. The higher dimensional analogue was obtained by Cima and
Stanton [2]. But the shape of approach regions in the higher dimensional case is different
from the one dimensional case and includes tangential directions. Also, we should note
that Cima and Stanton’s result is not applicable to solutions of semilinear equations.
In this talk, we will discuss the existence of admissible boundary limits of Green potentials
u = Gf in the unit ball B of Cn which satisfy the nonlinear inequality

0 ≤ f(z) ≤ c(1− |z|)n(p−1)u(z)p for a.e. z ∈ B,

where c > 0 and 1 ≤ p < n/(n− 1) are constants.
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Quaternionic Fourier-Mellin Transform
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In this contribution we want to generalize the Fourier Mellin transform [1]

∀(k, v) ∈ Z× R, Mf (k, v) =
1

2π

∫ ∞

0

∫ 2π

0

f(r, θ)r−ive−ikθdθ
dr

r
, (1)

where f denotes a function representing, e.g., a gray level image defined over a compact
set of R2.
The quaternionic Fourier Mellin transform (QFMT) will be of the form

∀(k, v) ∈ Z× R, Mf (k, v) =
1

2π

∫ ∞

0

∫ 2π

0

r−ivf(r, θ)e−jkθdθ
dr

r
, (2)

where f : R2 → H denotes a function from R2 into the algebra of quaternions H, such
that f is summable over R∗

+ × S1 under the measure dθ dr
r
. R∗

+ is the multiplicative group
of positive and non-zero real numbers.
We will investigate the properties of the QFMT similar to the investigation of the quater-
nionic Fourier Transform (QFT) in [2, 3].
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Distortion theorems on some unit ball
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The object of this talk is to generalize the distortion theorems for convex mappings on
finite dimensional Euclidean balls to infinite dimension, as well as improving some infinite
dimensional results ([1]). From the perspective of the Riemann Mapping Theorem, an
appropriate generalization of the open unit disc in the complex plane C would be the
open unit ball B of a complex Banach space such that B is homogeneous. Indeed, it has
been shown in [5] that every bounded symmetric domain in a complex Banach space is
biholomorphically equivalent to such a ball. A key is some estimates involving the Möbius
transformation and the Bergmann operator on a homogeneous ball which may be of some
independent interest.
We refer to [2, 3] for reference and motivation for distortion results in higher dimensions.

Joint work with Cho Ho Chu(Queen Mary, University of London, England), Hidetaka Hamada (Kyushu

Sangyo University, Japan) and Gabriela Kohr(Babeş-Bolyai University, Romania)
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Positive p-harmonic functions with zero boundary condition
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Let 1 < p < ∞ and 0 < ϕ < π. We denote by Dϕ the domain {z ∈ C : | arg z| < ϕ }. We
find positive p-harmonic functions u(z) on Dϕ with the boundary condition,

u(z) =

{
0 for | arg z| = ϕ or z = 0,

∞ for z = ∞,
(1)

or

u(z) =

{
0 for | arg z| = ϕ or z = ∞,

∞ for z = 0.
(2)

We consider the form u(z) = rkf(θ) for z = reiθ. Aronsson [1] determined p-harmonic
functions of the form u(z) = rkf(θ), 2 < p < ∞. If u(z) is satisfied with the boundary
condition (1), then k is positive. This k is denoted by kp

+. On the other hand, if u(z) is
satisfied with the boundary condition (2), then k is negative. This k is denoted by kp

−.
Let β = π/(2ϕ). For p = 2, it is easy to calculate k2

+ and k2
−,

k2
+ = β, k2

− = −β.

For p ̸= 2, we consider two case, (i) p > 2 and (ii) 1 < p < 2, and we give explicit
representations for u(z). kp

+ and kp
− depend only on p and β. Moreover, we prove that

lim
p→2

kp
+ = k2

+ = β,

and
lim
p→2

kp
− = k2

− = −β.

References

[1] G. Aronsson, Construction of singular solutions to the p-harmonic equation and its limit equation for
p = ∞, Manuscripta Math. 56 (1986), no. 2, 135–158.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Fréchet law for Maximal Cuspidal Windings
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We establish a Fréchet law for maximal cuspidal windings of the geodesic flow on a Rie-
mannian surface associated with an arbitrary finitely generated, essentially free Fuchsian
group with parabolic elements. This result extends previous work by Galambos [Gal72]
and is obtained by applying Extreme Value Theory. Subsequently, we show that this law
gives rise to an Erdős-Philipp law and to various generalised Khintchine-type results for
maximal cuspidal windings. These results strengthen previous results by Sullivan, Strat-
mann and Velani for Kleinian groups, and extend earlier work by Philipp on continued
fractions, which was inspired by a conjecture of Erdős.

Joint work with Marc Kesseböhmer and Bernd Stratmann (University of Bremen, Germany).
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On Chirka’s question on the generalization of Forelli’s theorem
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A local Cℓ singular foliation at p ∈ Cn by holomorphic discs is a Cℓ map h : ∆×S2n−1 →
Cn satisfying the followings:

(1) For each v ∈ S2n−1, the correspondence h(·, v) : z ∈ ∆ → h(z, v) ∈ Cn is a
holomorphic embedding.

(2) h(0, v) = p for every v ∈ S2n−1.

(3) The image h(∆× S2n−1) contains an open neighborhood of p in Cn

(4) For each v ∈ S2n−1, ∂h
∂z

∣∣
(0,v)

= rvv for some rv ∈ R.

(5) h(z, eiθv) = h(eiθz, v) for every θ ∈ R, z ∈ ∆ and v ∈ S2n−1.

We prove the following theorem:

Theorem (J.-C. Joo, K. -T. Kim and G. Schmalz) Let f be a function of class C1∩
C∞(0) in a domain Ω containing the origin and let h be a local C1 singular foliation at 0.
Suppose that fv := f ◦ h(·, v) is holomorphic for every v ∈ S2n−1. Then f is holomorphic
in a neighborhood of the origin.

This is a generalization of theorems of [2] and [1].

Joint work with K. -T. Kim (POSTECH) and G. Schmalz (University of New England).
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Zéros de la fonction holomorphe et bornée dans un polyhèdre analytique de
C2.

Kazuko Kato
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On cherche la condition nécessaire pour la surface S de zéros de la fonction holomorphe
et bornée dans un polyhèdre analytique de l’espace C2 de (z1, z2).
Et pour la surface S vérifiant la condition, on construit la fonction f(z1, z2) holomorphe
et bornée, telle que S est définie par f(z1, z2) = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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positivity of canonical bundle
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In this talk, we will introduce several numerical relations between the Carathéodory mea-
sure hyperbolicity and the algebro-geometric positivity of the canonical bundle over a
compact complex manifold. If possible, we will also mention the case of the cotangent
bundle.
The Carathéodory measure hyperbolicity is defined by a positivity condition of the Carathé-
odory pseudo-volume form or the Carathéodory measure. These objects are intrinsic and
modeled on the Poincaré measure on the complex ball and so they also have the volume
decreasing property for holomorphic maps. It is a generalization of the classical Schwarz
lemma. By the definition, it can be expected that a Carathéodory measure hyperbolic
manifold is closely related to a manifold with a metric whose Ricci curvature is negative.
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Hence it is very likely that the Carathéodory measure hyperbolicity leads to the positivity
of the canonical bundle.
In order to connect these two notion to each other, we observe the curvature of the
Carathéodory pseudo-volume form or the Carathéodory metirc which certainly reflects
the Carathéodory measure hyperbolicity. We grasp the meaning of the curvatures of
these objects in the sense of pluri-potential theory or real analysis, and investigate them.
As a consequence, we can compare explicitly the quantities measuring the Carathéodory
measure hyperbolicity with the quantities measuring the positivity of the canonical bun-
dle. For example, we have that the curvature of the Carathéodory pseudo-volume form is
bounded from above by −1. As its application, we can explicitly estimate the volume of
the canonical bundle from below by the Carathéodory total volume.
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A generalized version of the Newlander-Nirenberg theorem
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For an almost complex manifold (M2m, J), m ≥ 1, there can be at mostm independent J-
holomorphic functions, which is the case that the integrability condition due to Newlander
and Nirenberg as a complex version of the Frobenius theorem. In this talk, we determine
the partial integrability on almost complex manifolds as a generalization of the Newlander-
Nirenberg theorem. As a complex version of Cartan-Gardner theory, we follow the method
which involves analyzing a certain torsion tensor.

This talk is based on the collaboration with Chong-Kyu Han (Seoul National University).

References

[1] S. Berhanu, P. Cordaro and J. Hounie, An introduction to involutive structures, Cambridge U. Press
(2008).

[2] E. Cartan, Les systemes differentiels exterieurs et leurs applications geometriques, Herman, Paris,
1945.

[3] R. B. Gardner, Invariants of Pfaffian systems, Trans. Amer. Math. Soc. 126 (1967), 514–533.

[4] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of
Math. (2), 65 (1957), 391–404.

22



Correspondence between spirallike functions and starlike functions

Yong Chan Kim
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Let λ be a real number with −π/2 < λ < π/2. In order to study λ-spirallike functions,
it is natural to measure the angle according to λ-spirals. Thus we are led to the notion
of λ-argument. This fits well the classical correspondence between λ-spirallike functions
and starlike functions. Using this idea, we extend deep results of Pommerenke [2], [3] and
Sheil-Small [4] on starlike functions to spirallike functions. As an application, we solved
a problem given by Hansen in [1].

Joint work with Toshiyuki Sugawa (Tohoku University).
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Linear slices of the quasifuchsian space of punctured tori
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After fixing a marking (V,W ) of a quasifuchsian punctured torus group G, the complex
length λV and the complex twist τV,W parameters define a holomorphic embedding of the
quasifuchsian spaceQF of punctured tori into C2. It is called the complex Fenchel-Nielsen
coordinates of QF . For c ∈ C, let Qγ,c be the affine subspace of C2 defined by the linear
equation λV = c. Then we can consider the linear slice Lc of QF defined by QF ∩ Qγ,c

which is a holomorphic slice of QF . For any positive real value c, Lc always contains
the so called Bers-Maskit slice BMγ,c studied in [1] and [2]. In this talk we consider
the topology of Lc and show that if c is sufficiently small, then Lc coincides with BMγ,c

whereas Lc has other components besides BMγ,c when c is sufficiently large [3].

Joint work with Yasushi Yamashita (Nara Women’s University).
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Quaternion windowed linear canonical transforms
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In the talk, we introduce the windowed linear canonical transforms (WLCTs) of quater-
nion signals. It is named quaternion windowed linear canonical transforms (QWLCTs) of
signals. The work is based on the recent paper in WLCTs of complex-valued signals. The
generalized the results to the quaternion analysis setting. The QWLCTs offer local con-
tents, enjoys high resolution, and eliminates cross terms. Some of their useful properties
are derived, such as covariance property, orthogonality property and inversion formulas.
The QWLCTs are new in the literature and has some consequences that are now under
investigation.
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This paper we discuss the influence of a governing law on a potential vector field, which
always happens in a natural or technical phenomenons. This research leads us to the
following initial value problem (IVP) of the type ∂u/∂t=Lu, u(0, .) = φ where t is the
time variable, x is spacelike variable belonging to three - dimensional Euclidean space
and L is a linear differential operator of first order (in the matrix - type); φ is the initial
potential vector field. In the view of the classical Cauchy - Kovalevskaya theorem, the IVP
is solvable provided that L has analytic coefficients and the initial function is analytic.
On the other hand, the H. Levy example (see [1]) shows that there are equations of the
above form with infinitely differentiable coefficients not having any solutions. The paper
in hand describes all linear differential operators of the first order L, so that the IVP is
uniquely solvable for every given potential vector field φ.

Joint work with Le Cuong (Hanoi University of Science and Technology) and Nguyen Thanh Van (Vietnam

National University).
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Asymptotic expansion of Bergman kernel for tube domain of infinite type
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The asymptotic expansion formula for Bergman kernels near boundaries of smoothly
bounded strongly pseudoconvex domains have wide and useful application to complex
analysis. Its extension to smoothly bounded weakly pseudoconvex domains in general
has been open. Kamimoto obtained such expansion formula for finite type pseudoconvex
domains with circular symmetries and finite type pseudoconvex tube domains.([2] and [3]
)
Inspired by recent work by Bharali on growth estimate of the Bergman kernel for infinite
type pseudoconvex domains ([1]), an expansion formula for Bergman kernel on the diag-
onal near exponentially-flat infinite type boundary point for pseudoconvex tube domain
in C2 is obtained.
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In this talk, we will consider a class of operators which are finite sums of products of
Toeplitz and Hankel operators on the Dirichlet space of the unit disk. We then discuss
recent results on the characterizing problems of when such an operator in that class is
zero, of finite rank or compact.
This talk will be based on the recent works in [1] and [2].
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On meromorphic solutions of certain type of non-linear differential equations
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We consider meromorphic solutions of non-linear differential equation of the form

fn +Qd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z),

where Qd(z, f) is a differential polynomial in f of degree d ≤ n−2 with rational functions
as its coefficients, p1, p2 are rational functions and α1, α2 are polynomials. More precisely

and mainly we have shown the conditions concerning
α′
1

α′
2

that will ensure the existence

and forms of the possible meromorphic solutions of the above equation. These results
have extended and improved some known results obtained most recently.

Joint work with Chung-Chun Yang(China University of Petroleum) and Jian-Jun Zhang(Nanjing Uni-

versity).
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A condition for an infinitely generated Schottky group to be classical
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Consider a set
C = {Cj, C

′
j | j ∈ N}

of countably infinite number of pairs of simple closed curves in C such that not only these
curves but also the interiors of them are mutually disjoint. We further assume that the
exterior of Cj is mapped onto the interior of C ′

l by a Möbius transformation gj for every
j. Let G be the group generated by all gj defined as above. Here, we call G an infinitely
generated Schottky group with respect to the loop family C, if the limit set Λ(G) of G is
totally disconnected. If all elements of C are circles, then we call G an infinitely generated
classical Schottky group.
We show that, if C satisfies the modified Maskit condition and the tameness condition, G
is an infinitely generated Schottky group with respect to C, further, if the corresponding
Schottky marked Riemann surface R is maximally symmetric, G is an infinitely generated
classical Schottky group.
Our consideration has a closed connection with a so-called circle domain theorem of Koebe,
which has been generalized by He and Schramm.

Joint work with Masahiko Taniguchi (Department of Mathematics, Faculty of Science, Nara Woman

University).
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Characterization of the value distribution of meromorphic functions is based on the growth
of the Nevanlinna characteristic function T (r, f), proximity function m(r, a, f) and the
counting function N(r, a, f). Ahlfors-Simizu form of T (r, f) is based on the spherical
derivative and m(r, a, f) can be described in terms of rotations of the Riemann sphere.
In case of bounded analytic functions situation is completely different. Growth of the
spherical derivative does’t provide some delicate information on the value distribution
of a function. In order to study value distribution and boundary behavior of bounded
analytic functions we will use behavior of the hyperbolic derivative and hyperbolic or
pseudo-hyperbolic metric.
S. Yamashita was one of the first one who considered systematically hyperbolic function
classes. He introduced hyperbolic Hardy, BMOA, Dirichlet and Lipschitz classes. Some
research on hyperbolic Hardy classes was done by H.O. Kim, E.G. Kwon and etc. More
recently, W. Smith studied hyperbolic little Bloch classes. Hyperbolic Qp and Besov
classes were studied by R. Zhao, S. Makhmutov, X. Li and etc.
In our talk we will present results concerning value distribution of bounded analytic
functions and applications to composition operators. One of these results is the following:
THEOREM. If φ is a bounded analytic function on the unit disk D, a ∈ D, and 0 < r < 1,
then

T⋆(r, φ) = m⋆(r, a, φ)−N(r, a, φ)

where

T⋆(r, φ) =
1

π

∫∫
|z|<r

(
|φ′(z)|

1− |φ(z)|2

)2

ln
r

|z|
dA(z)

and m⋆(r, a, φ) is a hyperbolic proximity function.
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Schwarzian derivatives of asymptotically conformal extension of univalent
functions
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Let D be the unit disk and D∗ = C − D. For a Beltrami coefficient µ ∈ L∞(C) with
∥µ∥ < 1 such that µ(z) = 0 for z ∈ D, let fµ be a quasiconformal automorphism of C
with fµ

z̄ /f
µ
z = µ(z). The restriction of fµ to D is conformal, that is, fµ|D is a univalent

function on D. We consider its Schwarzian derivative φµ(ζ) = Sfµ(ζ). On the other hand,
fµ|D∗ is a quasiconformal homeomorphism, and if lim|z|→1+0 µ(z) = 0, then fµ|D∗ or µ|D∗

is called asymptotically conformal. In this case, the corresponding Schwarzian derivative
satisfies lim|ζ|→1−0(1 − |ζ|)2|φµ(ζ)| = 0. We investigate a quantitative estimate of this
decay order in terms of that for µ. Set

k(t) = sup
1<|z|≤1+t

|µ(z)| ; σ(t) = sup
1>|ζ|≥1−t

(1− |ζ|)2|φµ(ζ)|.
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Becker [1] proved that, for every ε > 0, it holds that

σ(t1+ε) ≤ 6{k(t) + t2ε} (0 < t < 1).

Restricting ourselves to the case where k(t) = O(tα), we have the following:

Theorem. For every α with 0 < α < 1, there exists a constant C > 0 depending only
on α such that, if k(t) ≤ c tα then σ(t) ≤ Cc tα.

A similar result holds by replacing σ(t) with

β(t) = sup
1>|ζ|≥1−t

(1− |ζ|)|ϕµ(ζ)|,

where ϕ(ζ) = (fµ)′′(ζ)/(fµ)′(ζ) is the pre-Schwarzian derivative of fµ|D.
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Morrey capacity of balls
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The notion of classical Newton capacity has been generalized to various forms. Among
others, Meyers introduced a general notion of Lp-capacity, which is defined by general
potentials of functions in the Lebesgue space Lp and such notion of capacity has been
proved to provide rich results in the nonlinear potential theory as well as in the study of
various function spaces and partial differential equations. The most useful Lp-capacity
is Riesz capacity. The aim in this note is to estimate the Riesz capacity of balls B(x, r)
centered at x of radius r in the Orlicz setting.
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Boundedness of Berezin transform on Herz spaces
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In this paper, we give the condition for the boundedness of the Berezin transforms on
Herz spaces with a normal weight on the unit ball of Cn. And we provide the integral
estimates concerning pluriharmonic kernel functions. Using this, we finally obtain the
growth estimates of the Berezin transforms on such Herz spaces.

Joint work with Chu-Hee Cho ( Seoul National University).
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Parametrizations of Teichmüller spaces by trace functions
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Let S̄ be a surface of type (g,m), that is, a smooth compact and orientable surface of genus
g with m boundary curves, and S the interior of S̄, where 2g−2+m > 0. The Teichmüller
space T (g,m) is the space of equivalence classes of marked complete hyperbolic metrics
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of curvature −1 on S such that each boundary curve is homotopic to a unique closed
geodesic curve in S.
There are finitely many closed curves c1, . . . , cN on S such that their geodesic length
functions give a global real analytic coordinate system of T (g,m). It is known that the
minimal number of geodesic length functions needed to parametrize globally T (g,m) is
equal to 6g − 6 + 3m for m > 0; 6g − 5 for m = 0, whereas T (g,m) is homeomorphic
to R6g−6+3m. In this talk we establish a trace identity for groups of type (1, 2) and use
this identity to find an algebraic equation satisfied by 6g− 5 geodesic length functions, or
equivalently, trace functions, which parametrizes T (g, 0). We basically follow Feng Luo’s
paper [1] which gave a clear account of the parametrization of the Teichmüller spaces the
minimal number of geodesic length functions.

Joint work with Toshihiro Nakanishi (Shimane University).
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Infinite dimensional manifolds
with properties similar to Stein manifolds
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OKa [4] proved that a pseudoconvex Riemann domain over Cn is holomorphically convex
, holomorphically separated and so a domain of holomorphy by Cartan-Thullen theorem.
A complex manifold, which is holomorphically convex and holomorphically separated,
is called a Stein manifold. The problem to ask if a given complex manifold is a Stein
manifold has been investigated in various situation(cf. Siu [5] and its References etc.).
Moreover the result of Oka has been extended to Riemann domains over various infinite
dimensional topological vector spaces(cf. Dineen [1] and their References etc.).
Let E be a complex Banach space with a Schauder basis and letG(E; r) be the Grassmann
manifold of all r-dimensional complex linear subspaces in E. Let (ω, φ) be a pseudoconvex
Riemann domain over G(E; r) with ω ̸= G(E; r).
In this talk we prove that the Riemann domain (ω, φ) is holomorphically convex, holomor-
phically separated and a domain of holomorphy. This result gives an example of infinite
dimensional complex manifolds with properties similar to Stein manifolds.
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Similar to convex, close-to-convex or starlike functions, concave functions form a special
class in the geometric function theory. In an early stage A.W. Goodman for instance
considered them in a general way (see [1]). However the first detailed analysis was given
by A.E. Livingston in 1994 in [2]. Based on the work of Livingston, F.G. Avkhadiev
and K.-J. Wirths continued the analysis of concave functions in [3]-[6], focusing on the
coefficients of Taylor and Laurent expansions.
This presentation will introduce some basic analytic characteristics of concave functions
and give a short summary of known estimates for the coefficients. Furthermore several
questions concerning these results, as well as some future tasks will be mentioned.
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The repelling density problem and logarithmic equidistribution in
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It is an open problem whether the repelling periodic points are dense in the classical
Julia set of a rational function over non-archimedean fields. In this talk, we give a partial
positive answer to this question based on a study of “logarithmic equidistribution” on
Berkovich projective line over non-archimedean and complex number fields.
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Reflection Group of type D4 and Holonomic Systems with Singularities along
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In my talk, after defining the discriminant of the reflection group of type D4, I introduce
systems of uniformization equations with singularities along its zero locus. My main
purpose is to solve a special case of such a system by elliptic integral and hypergeometric
functions.
Related topics are discussed in [1], [2], [3] and the references there.
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On a theorem of Paul Yang
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Paul Yang showed in [1] that, given any two negative constants, the bidisc cannot admit
any complete metric with its holomorphic bisectional curvature bounded between. His
proof works for any dimensional polydiscs as well as the Hermitian symmetric domains
with rank not less than 2. This method works also for product of complete Kälerian
manifolds, as shown by H. Seshadri and F. Zheng [2]. Still, whether there are examples
falling into this category that are neither homogeneous nor product is poorly understood.
In this talk, I will present new examples of inhomogeneous bounded domains that cannot
admit complete Kähler metrics with their bisectional curvature bounded between any
prescribed negative bounds.
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It is well known that the Mandelbort set M := {c ∈ C : c, c2 + c, (c2 + c)2 + c, · · · ̸→
∞ as n → ∞} is connected, but its local connectivity is still unknown. Douady and Hub-
bard demonstrated the connectedness of the Mandelbrot set by constructing a conformal
isomorphism Φ : Ĉ \ M → Ĉ \ D where Ĉ is the Riemann sphere and D is the closed
unit disk. According to Carathéodory’s continuity theorem, the map Ψ := Φ−1 extends
continuously to the unit circle, which implies that the Mandelbrot set is locally connected.
This is the motivation of our study. Jungreis has presented an algorithm to compute the
coefficients bm of the Laurent series of Ψ(z) at ∞. Several detailed studies of the coeffi-
cients bm were given in [1], and others. There are also several empirical observations by
Zagier mentioned in [1]. After that, Komori and Yamashita studied a generalization of
bm in [3]. Furthermore Ewing and Schober studied the coefficients am of the Taylor series
of the function f(z) := 1/Ψ(1/z) at the origin in [2].
In this talk we denote several properties of a generalization of the coefficients am and bm.
Specifically a formula for these coefficients are given. Infinitely many coefficients are zero
and also infinitely many non-zero coefficients are determined. During the presentation,
we touch the observations by Zagier as well.
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We give a representation form of integral formulas and research properties of the kernel
formula on Clifford analysis.

Joint work with Sujin Lim (Pusan National University).
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For an analytic function f(z) on the unit disk |z| < 1 in the complex plane with f(0) =
f ′(0) − 1 = 0 and f(z) ̸= 0, 0 < |z| < 1, we consider the power deformation fc(z) =
z(f(z)/z)c for a complex number c. We determine those values c for which the operator
f 7→ fc maps a specified class of univalent functions into the class of univalent functions.
A little surprisingly, we will see that the set is described by the variability region of the
quantity zf ′(z)/f(z), |z| < 1, for most of the classes that we consider in the present talk.
As an unexpected by-product, we show boundedness of strongly spirallike functions.

Joint work with Yong Chan Kim (Yeungnam University).
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Regarding the dynamics of a rational map h with deg(h) ≥ 2 on the Riemann sphere Ĉ,
we have the chaotic part in Ĉ. In fact, in the Julia set of h, which is non-empty, we have
the chaos in the sense of Devaney.
However, we show ([1, 2]) that in the (i.i.d.) random dynamics of polynomials on Ĉ,
generically, we have all of the following (1)(2)(3).

(1) The chaos of the averaged system disappears, due to the automatic cooperation of
many kinds of maps in the system (cooperation principle), even though each
map of the system or each pathwise dynamics has a chaotic part.
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(2) The limit state is stable under perturbations of the system.

(3) The speed of convergence to the limit state is exponentially fast.

We also investigate the bifurcation of the limit states under the assumption that the
“kernel Julia set” of the systems are empty.
Moreover, we see that even though the chaos of the averaged system disappears in the
sense of the space of C0 functions, we might have a kind of chaos in the sense of differentials
or in the sense of the space of Hölder continuous functions. More precisely, if we consider
the function T∞ of probability of tending to ∞ ∈ Ĉ, then under certain conditions, T∞ is
continuous on Ĉ but varies only on a very thin fractal set (so called the Julia set of the
associated semigroup), and the pointwise Hölder exponent of T∞ is strictly less than 1 for
a.e. point in the Julia set with respect to some nice “invariant” measure. In such case,
the function T∞ is called the devil’s coliseum.
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Let Ω be a smooth bounded domain in the n-dimensional Euclidean space Rn. For 1 ≤
p < ∞, we denote by bp(Ω) the harmonic Bergman space on Ω. It is a fact [4] that if
1 < p < ∞, any f ∈ bp(Ω) has the following representation:

f(x) =
∞∑
i=1

aiR(x, λi)r(λi)
(1− 1

p
)n, (3)

for some {λi}i ∈ Ω and {ai} ∈ ℓp, where R(x, y) denote the harmonic Bergman kernel
and r(x) denotes the distance between x and ∂Ω.
In the present talk, we give another representation by using modified reproducing kernels
in order to handle the case p = 1. We remark that modified kernels are introduced in [1].
We also discuss interpolating sequences (cf. [2]).
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We will talk about the growth functions of the Coxeter groups, which are known to be
rational functions (c.f. [1, 2]). In particular we will study the distributions of poles of the
growth functions of simplex hyperbolic Coxeter groups (c.f. [3]).

This is a joint work with Yohei Komori (OCAMI and Osaka City University).
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One considers the solvability of the equation

(Au)(x) = f(x), x ∈ M,

where A is a pseudo differential operator with symbol A(x, ξ),M ⊂ Rm is a bounded
domain with a boundary having the singularities of ”cone” or ”wedge” type.
Earlier the author introduced the concept of wave factorization for the symbol A(ξ) for
elliptic operator A. It was connected with multi-dimensional complex domain (radial tube
domain over cone) and requirement of analyticity for factors. (We refer to [1] and [2] for
details). This approach permitted to describe full solvability cases for a model pseudo
differential equation in the cone

Ca
+ = {x ∈ Rm : |x′| > a|xm|, a > 0}, x = (x1, x2, ..., xm), x′ = (x1, ..., xm−1).

In this report we consider the situations, when the cone Ca
+ can be degenerated into a ray,

i.e. a → +∞, and analyze possibilities for studying solvability for such model equations.
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Useful Information

Conference Site:

Seminar Rooms on the 7th floor of Aster Plaza
4-17, Kakomachi, Naka-ku, Hiroshima 730-0812, Japan
Aster Plaza — Tel: 082-244-8000, Fax: 082-246-5808

Accommodations in Aster Plaza:

The hotel is located on the 7th through 9th floors of Aster Plaza.
Check-in: 15:00-22:00
Check-out: 06:00-10:00
The hotel entrance is locked after 25:00.
Tel: 082-247-8700, Fax: 082-246-5808, email: reserve@hiyh.pr.arena.ne.jp

Reception and Banquet:

The restaurant Rencontre (site of the opening reception)
on the 1st floor of Aster Plaza, Tel: 082-247-3910
The restaurant Kurikawa (site of the Banquet)
3-2-3, Senda-machi, Naka-ku, Hiroshima, Tel: 082-245-2854

Contact Information:

Toshiyuki Sugawa
Graduate School of Information Sciences, Tohoku University
Aoba-ku, Sendai 980-8579 JAPAN
Tel: 022-795-4602 (office), Fax: 022-795-4654
Mobile: 090-4659-5635
sugawa@math.is.tohoku.ac.jp
http://sugawa.cajpn.org/
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